
Code Generation
Part I: The Game Plan

Game Plan

A. Write a few assembly language programs
yourself and compile them on the lab machines.
Include function calls, loops, and output
statements.

B. Write functions that walk through your parse
tree and find the offset from fp for every
parameter and local variable. You will want to
store this information in the declaration nodes
of the tree. More about this later

C. Write some helper functions that will format lines
of assembly code. For example, here is one of my
helper functions:

public void genRegReg(String opcode, String r1, String r2, String comment) {
 output.printf("\t %4s %4s, %4s %10s #%s\n", opcode, r1, r2, "", comment);
}

I have about 10 such functions, each formatting
different pairs of operands.

Note the comment parameter. You should
generate a comment for every line of your output
file.

D. Create some string constants for your register
names. Among others, I use fp for "%rbx" and
sp for "%rsp". You might want to decide now
which registers you will use as temporaries.

E. Create a system for generating unique label
strings. An easy way to do this is to create a label
counter as a static variable and then incorporate
that number as part of the label. In Java you can
say something like

label = String.format(".L%d", labelNumber);

F. Write a function that creates the header for your
code file. This will ultimately have global
variable and array declarations, a .rodata section
with string declarations, and a .text section that
starts with a .globl main declaration. Start with
just the .rodata and .text sections, and in the
.rodata section give only the strings you need for
printf and scanf. It will look something like the
next page:

.section .rodata

.WriteIntString: .string "%d "

.WritelnString: .string "\n"

.WriteStringString: .string "%s " .

.ReadIntString: .string "%d"

.text
.globl main

G. Your code generator will consist of 3 mutually
recursive functions:
 genCodeStatement(TreeNode t)
 genCodeExpression(TreeNode t)
 genCodeFunctionDec(TreeNode t)
You need to build them up simultaneously, in
small pieces that allow you to test out the
compiler as you go.

H. Start with genCodeFunctionDec(TreeNode t)
because the language won't let you write any
code that isn't inside a function. This is easy.
You need to:

a) Use the function name as a label for the
start of its code.

b) Move the stack pointer to the frame
pointer. I do this with
genRegReg("movq", sp, fp, "setup fp");

c) Generate code to allocate the function's
temporary variables

d) genCodeStatement(t.body)
e) generate code to deallocate the temporary

variables.
f) return

I. genCodeStatement(TreeNode t) needs to look at

the kind of statement node t represents. Our
function bodies are always compound
statements so start there. There is no code to
generate for the declaration in a compound
statement, so go straight to the body.

J. The body of a compound statement is a
statement list. You generate code for this by
generating code for each statement in the list.

K. Generate code for a write(exp) node. This calls
genCodeExpression() on the exp child of the
write node. This code should leave the value of
exp in the accumulator (%eax or %rax). For the
rest of the write statement you should look at
the Runtime Environment handout for how to
handle I/O.

L. The code generated by
genCodeExpression(TreeNode t)
should always evaluate the expression rooted
at node t and leave its value in the
accumulator. Start this with integer constants;
the code for the expression 23 is just

movl $23, %eax

This much should allow you to compile and run
the program

 void main(void) {
 write(6);
 }

M. Now extend genCodeExpression(TreeNode t) to
allow arithmetic operations. This allows you
compile and run
 void main(void) {

 write(3+4*5);
}

N. Everything else will need variables, so extend
genCodeExpression(TreeNode t) to handle
assignment expressions.

O. I suggest adding function calls and returns next.
These are actually easy.

P. The rest of the language you can do in any
order, one feature at a time. You might want to
save pointers till the end.

